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ABSTRACT

How can we compare different listeners' experiences of the same
music? For decades, experimenters have collected continuous
ratings of tension and emotion to capture the moment-by-moment
experiences of music listeners. Over that time, Pearson correlations
have routinely been applied to evaluate the similarity between
response A and response B, between the time series averages of
responses, and between responses and continuous descriptors of the
stimulating music. Some researchers have criticized the
misapplication and misinterpretation of this class of statistics, but
alternatives have not gained wide acceptance. This paper looks
critically at the applicability of correlations to continuous responses
to music, the assumptions required to estimate their significance, and
what is left of the responses when these assumptions are satisfied.
This paper also explores an alternative measure of cohesiveness
between responses to the same music, and discusses how it can be
employed as a measure of reliability and similarity with empirical
estimates of significance.

I. INTRODUCTION

Continuous ratings of music perception and experience are
common measures of the dynamics of a listener’s response.
Using some kind of digitally sampled interface, participants
report how they perceive or experience the music being
presented on scales such as aesthetic experience, tension, and
perceived or experienced emotion. Each response forms a
time series sampled between 1 and 10 times a second for the
duration of the musical stimulus. Although such responses are
collected by dozens of researchers around the world, there is
little consensus on appropriate techniques for evaluating
similarity between responses.

Pearson Product Moment Correlations [PPMC] have been
naively applied to these time series since the late 1980s in an
attempt to capture the reliability of ratings on repeated tasks
[Gregory, 1995]. Correlations have since been employed to
compare different participants’ responses [Krumhansl, 1996],
between sections of responses [Livingstone et al., 2011], and
between responses and continuous representations of the
music, and to assess legs in responses via cross-correlation
[Lucas et al., 2010]. Outside of music cognition work, it is
commonly known that correlations cannot be applied blindly
to time series data. Schubert in 2002 published an early
criticism of the common practice calling out the problem of
serial correlation and proposing the practice of analyzing
difference data, or reading changes, to reduce the inflation of
r-values. Other researchers have attempted to improve matters
by wusing nonparametric correlation measures, such as
Spearman [Vines et al., 2006], by downsampling responses to
their average Nyquist frequency [Chapin et al., 2010], and by
employing autocorrelation models as commonly employed for
the analysis of economic time series [Dean and Bailes, 2010].

Despite these warnings and attempts at finding alternatives,
researchers have continued to publish analyses of continuous
responses using inappropriately applied correlations and
estimates of significance. This paper attempts to present in
more detail the limits of correlations and the impact of serial
correlation in the data, and to deter future abuse of these

important classes of calculations.
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Figure 1. Example of correlation on discrete data: two listeners
retrospective ratings of liking on 22 musical excerpts.

II. CORRELATIONS

A correlation is a standardized measure of covariance
between two variables [Rodgers and Nicewander, 1988].
Consider the example shown in figure 1 on discrete data: two
subjects’ retrospective liking ratings for 22 excerpts of music.
The top graph to the left shows the values from 1 to 7 which
each listener gave to each excerpt. To the right are the
distributions of each listener’s ratings. Both the bar graph and
the estimated normal distribution, W[y, &y ), capture the
fact that on average subject 1 reported lower ratings than
subject 2, and this difference is also shown in the left-most
scatterplot, as most of the excerpts fall below the diagonal.
Correlations discard differences of means and variances to
give conveniently interpretable standardized coefficient
values. A Pearson product moment correlation between these
rating values gives the same result as the Pearson correlation
on the data after normalizing each set of ratings to have a
unitless distribution with a zero valued mean and a standard
deviation of one. The right-most scatterplot of Figure 1 shows
the ratings standardized by rank, in which the rating value on
each excerpt is replaced by its rank (or in this case its tied
rank) from smallest to largest value within each subject’s
distribution of ratings. This non-linear standardization of
values is used to compute the non-parametric Spearman
correlation, again discarding units of either variable.

A correlation coefficient calculated on these two sets of
liking ratings expresses how closely the listeners’ relative



preferences are shared. Though they rarely gave the same
rating, it is possible that they agree on which excerpts were
worst and which were best. The Pearson Product Moment
Correlation coefficient, r, can be calculated with the following

equation:
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In this case, X; and Y;are the liking ratings given to the i"
excerpt by subject 1 and subject 2 respectively. According to
the numerator, each excerpt which is rated above average in
liking by both subjects contributes positively to the total
correlation, as does each excerpt which is considered below
average by both. Excerpts on which the subjects disagree
(relative to their respective averages) contribute negatively to
the total correlation; some of these can be seen in the lower
right quadrant of the standard score scatterplot in figure 1.
Excerpts rated close to the average liking have little to no
impact on the correlation, while those at the extremes of the
distributions have considerably more clout. This sensitivity
makes the Pearson correlation vulnerable to the effect of
outliers; the implications of the values of r, which ranges from
-1 to 1, depend on the normality of the distributions being
compared, i.e. how well the bell-curve fits over the
distribution. Spearman’s rho, p, is calculated much the same
way as the Pearson correlation, using the rank numbers of the
variables instead of their measured values. Thus excerpts on
which the subjects agree are above their median liking ratings
contribute positively to the Spearman correlation coefficient,
and so on. The transformation from measured distribution to
rank reduces the sensitivity to outliers and does not depend on
the assumption of normality. It is a popular non-parametric
alternative to the PPMCC, but certainly not the only
non-parametric option.

Correlation coefficients by themselves are interesting
statistics, analyses of cross-correlation and serial correlation
make use of them directly as seen in [Luck et al., 2008].
Correlations are, however, often used in conjunction with a
test of significance. Significance tests generally estimate how
likely the null hypothesis would yield statistics similar to or
more extreme than your empirical data. For correlations, a
significance test evaluates how likely the same number of
values sampled independently from uncorrelated distributions
would result in correlation coefficients of equal or greater
value to that of the calculated r or p. With some significance
threshold such as alpha = 0.01, we agree to consider
correlations significant (i.e. presumably repeatable) when the
likelihood of the null hypothesis falls below the threshold.
Estimating significance is tricky as it depends on our having
the right assumptions about this null hypothesis. The default
significance estimator in statistics software, the student T
estimate for N-2 degrees of freedom, is built on the
assumption that the distributions of each variable are normal,
i.e. with most values near the mean and steadily fewer values
further above and below this central tendency. Another
method for estimating the significance of correlation
coefficients is to permute the sample values and calculate
their correlation a hundred or more times [Hotelling and Pabst,
1936]. The likelihood of the empirical coefficient can then be
interpreted with respect to this new distribution. The
significance values reported on the correlation graphs (figures
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1, 2 and 3) are naive student T estimates, and they are
intended to be interpreted critically. In figure 1, the p values
are sufficiently low to ignore this issue.

These significance tests are functions of the number of
samples being evaluated: they depend on the assumption that
each sample carries independent information about the
phenomena under evaluation. The likelihood that coincidence
would yield r = 0.4 over 5 samples is much greater than the
likelihood that coincidence would yield the same value over
10 or 50 samples. Statistical significance is a measure of the
robustness of a relationship between the variables, but it
makes no claims about the explanatory or predictive power of
one variable on the other.

Continuous liking ratings of one excerpt
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Figure 2. Example of correlation on continuous data: the same
two listeners continuous ratings of liking on a four-minute
excerpt of music.

Now consider figure 2, the set of graphs depicting the
correlation between the same two subjects’ continuous ratings
of liking on a four-minute musical excerpt. The rating data are
sampled every second (1 Hz), a common sample rate on the
low side for recent work with continuous rating responses to
music. These data demonstrate the three principal challenges
of employing correlations on continuous rating responses:

¢ Serial correlation: these continuous ratings are highly
serially correlated, with the value at one point strongly
predicting the value of the next. Besides the long
plateaus shown in the top-left graph of figure 2, the
scatterplots show the data thickly bunched and strung
together. Correlation coefficients between time series
with high serial correlation are inflated by their
respective intra-relatedness [Bartlett, 1935].

¢ Distribution of values: the values of continuous rating
data often fail to be normally distributed. The difference
in this case can be seen between the bar graph and the
estimated bell curve for each subject’s rating values,
top-right.

* Independent sampling: given the method of collecting
these rating data and the arbitrariness of the sample rate,
the number of samples does not represent the amount of
independent information [Bartlett, 1935], thus we do not
have an easy estimate for the degrees of freedom of any
standard significance test.

At 1 Hz, most collections show extremely high average

autocorrelation, above 0.85. (top graph). Lowering the sample
rate reduces the degree of autocorrelation, but most of these



collections still average around r = 0.6 when sampled every
10 seconds.

III. CORRELATION COMPROMISES

Serial correlation can be assessed by correlating a series
with itself delayed by one sample:
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One simple method to ameliorate the serial correlation
problem is to work instead with the first-order difference of
each series, a sequence in which each value reports only how
one sample changes from the last in the original data values.
First employed on continuous ratings to music by Schubert
[Schubert, 2002], this method has been picked up by other
researchers in recent years [Dean and Bailes, 2010]. Another
possible aid to serial correlation is downsampling, with the
assumption that given enough time between samples, new
information will have had the chance to influence the rating
reported.
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Figure 3. The distributions of average auto-correlation for 32
collections of continuous ratings of emotion to music on the
original ratings and their first order difference series at different
sample rates.

To test these proposed solutions, Figure 3 shows results
from 32 collections of rating responses. These collections are
one-dimensional ratings of emotion (valence, arousal, or
intensity, experienced and perceived) from five different
subject pools (average 27 responses per collection) to 16
different musical stimuli (average length 240 seconds)
aggregated from three distinct experiments. The rating ranges
have all been normalised to [0,1] and sample rates set to 1 Hz.
In the top graph of Figure 3, the distributions of the average
autocorrelations of these collections are compared for sample
rates going from 1 Hz to 0.1 Hz (once every 10 seconds), and
in the bottom graph, the same is evaluated on the first-order
difference series of these collections. Differencing the data
does dramatically decrease serial correlation, however these
collections do not distribute evenly around zero average
autocorrelation without also downsampling to 0.167 Hz, or
once every 6 seconds. If our primary concern is to eliminate
serial correlation from these analyses (rather than compensate

using more complicated autoregression models), these data
suggest that correlations should be assessed on first-order
differenced series which are sampled no faster than once
every five seconds. The proportion of negatively
autocorrelated collections for very low sample rates suggests a
mild oscillation in these series, but the significance of this
requires more exploration.
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Figure 4. The distributions of average inter-response
correlations for 32 collections of continuous ratings of emotion to
music on the original ratings and their first order difference
series at different sample rates.

Correlations have been used as an argument for the
cohesiveness of a collection of responses. Krumhansl’s Music
Perception article in 1996 may have been the first to report the
average inter-response correlation, without acknowledgement
of serial correlation on these data. Figure 4 shows how
downsampling and differencing the responses in these
collections change their average inter-response correlation.
Downsampling barely affects this statistic on the original
rating data; this underlines the concern that the number of
samples in these time series far exceeds the quantity of
information they contain. On the other hand, the bottom graph
of figure 3 shows the average inter-response correlations of
the differenced responses increasing as the sample rate goes
down; this happens because each sample is representing a
larger time window over which some change of rating may
take place. As these correlations do not make use of sequence,
finely sampled difference data runs the risk of separating
concurrent changes in ratings when participants take different
amounts of time to report their reactions to the stimulus.
Higher sample rates also have a larger proportion of zero
values on these rating data, which can cause further problems
for statistical interpretation.

Figure 5 shows the results of applying these reductions to
the two responses discussed earlier. The top-left graph shows
how the two series are flattened to zero, with variation when
the original ratings changed values. Even when downsampled
to 0.167 Hz, the distributions are strongly dominated by zero
valued data points. The scatterplots show a much Iless
convincing story of the relationship between the two series:
the relatively large r value is strongly influenced by one data
point, and this advantage is lost in the rank representation of
these rating change series.
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Figure 2. Example of correlation on differenced and

downsampled continuous rating data using the same two
listeners continuous liking ratings of a four-minute excerpt of
classical music.

The goal of reducing serial correlation to zero is somewhat
suspect, given the nature of the data. As pointed out by Vines
et al., music is serially correlated, at least in its affect [2006],
so the low rate of change in continuous ratings may be a
reflection of the stimulus rather than marking the upper limit
in the temporal sensitivity of the person making the rating.

Looking back at the series plotted in figure 2, it is hard to
believe that there is no plausible relationship between these
two ratings as implied by the result shown in figure 5. While
one subject hardly ever reports any decreases in their liking of
the music, the increases in ratings roughly line up. Also, both
ratings spend nearly the entire time in the top third of the
rating scale. While our eyes easily see such similarities,
correlations water them down or throw them away.
Considering that regression analysis is also built on the basics
of correlations, this suggests that a lot of potentially
interesting information has been overlooked by many attempts
to analyse these collections of ratings.

IV. ALTERNATIVES TO CORRELATIONS

Alternatives to correlations are numerous, depending on the
purpose of the application. The following section concentrates
on alternatives to the average inter-response correlation. This
is a statistic which has been used to legitimize the
cross-sectional average of a collection of responses (the
average response time series), depending on the assumption
that if the individual responses are highly correlated, their pair
wise relationships should be principally driven by the stimulus
and thus the average response time series has a good chance
of capturing the shared variation of rating values over the
many sample points. This has often been reported with
estimates of significance, which are (in all likelihood, though
the method of estimation is not normally reported) false.
Rather than estimate the null hypothesis with shaky
assumptions, 32 collections of unrelated responses were
assembled by sampling the 32 experimental responses at
random and trimming the ends of the responses to fit the
shortest in each collection.

One intuitive measure of inter-response similarity is simply
their average difference, on the [0,1] rating range, or the
average Euclidian distance, normalized for the number of

sample points. Figure 6 shows the distribution of the average
Euclidean inter-response distances for the real experimental
data sets and the random collections in the top graphs: to the
left are the original rating series, to the right, the
downsampled and differenced series. While the random
collections have higher distances between responses, the
experimental data sets show a similar range of inter-response
distances. The average inter-response Pearson correlation
shows similar degrees of overlap between these data, though
the statistics reported here are by and large much lower than
many of the reported average inter-response correlations in
the literature. Applying the same to the differenced data
shows less overlap, though the values are still quite low, over
all.
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Figure 6. Distributions of coherence statistics on experimental
collections of continuous responses and randomly assembled
unrelated continuous response collections. The left column shows
these measures on rating data, the right column reports the
measures as applied to differenced and downsampled responses.

Another alternative measure is inspired by the purpose of
the statistic: to validate the average as an aggregation of
shared information rather than the accumulation of errors and
differences between responses. With some normalization to
compensate for the number of responses in each collection,
this measure is the ratio of the standard deviation of the
average response time series over the average standard
deviation of the responses in the collection. By relating the
variance of the average rating time series to that of those of
the individual responses, we can differentiate between
averages that are flat because of disagreement and averages
that are flat because the stimulus is not dramatically variable.
To capture similarity of contour, the lower right-hand graph of
figure 6 shows this measure as applied to the differenced
series. The natural logarithm of the number of responses times
a constant appears to be a useful method for compensating for



the different sizes of collections, though a theoretical basis for
this has not yet been articulated.

To demonstrate the effectiveness of this statistic, the
normalized standard deviation ratio of mean- to- individual
responses first-order difference series, Figure 7 shows three
experimental collections which score high beside three which
score within range of the random response collections, their
averages plotted in black.
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Figure 7. Collections of continuous response separated by the
standard deviation ratio test on differenced data. To the left are
collections with high cohesiveness, the right are collections which
are no more cohesive than the unrelated response collections.

V. CONCLUSION

Continuous rating responses to music do not lend
themselves to statistical significance tests of correlations, nor
is this class of relatedness always the most relevant,
particularly after compensating for serial correlation. There
are many contexts in which correlations are used for analysis
of continuous ratings of music and musical experience, some
of which are not seriously hampered by the issues discussed
above. Cross correlation with descriptions of the stimuli, for
example, can be employed so long as some care is taken to
establish reasonable limits on confidence. Very high
correlation coefficients (say above 0.9, or 0.5 for differenced
data) can probably be trusted as a strong sign of relatedness,
even with high serial correlation. But estimates of significance
for these coefficients should only be included with
explanations of how the three main issues, serial correlation,
non-parametric distributions, and independent sampling, have
been addressed.

It is worth exploring measures of similarity or relatedness
that are closer to our intuitions on these rating data. Many
publications have repeated the same analytic mistakes out of
convenience while potentially important information has gone
unreported. While many others have handled some of these
issues, broadening awareness of the challenges of time series
in music cognition is the only way to find better methods.
Employing data from many experiments makes this kind of
comparative analysis possible, and I hope that others opt to
share published experimental data to improve the analytic
power of future methodological research.
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